Abstract

A method for automated analysis of phased mission reliability which considers the problem in terms of the construction of a continuous-time discrete-state Markov model and uses a standard Markov-chain solution technique that is adapted to the problem of phased missions is presented. The resulting state space is the union of the states in each independent phase, rather than the sum. This results in a model that can be substantially smaller than those required by other methods. A unified framework which is used for defining the separate phases using fault trees and for constructing and solving the resulting Markov model is discussed. The usual solution technique is altered to account for the phased nature of the problem. The framework is described for a previously published, simple three-component, three-phase system. An example in which a hypothetical two-phase application involving a fault-tolerant parallel processor is considered is given. The approach applies where the transition rates (failure and repair rates) are constant and where the phase change times are deterministic.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.