Abstract

Dental composites are used as restorative materials for filling cavities, shaping, and covering teeth for esthetic purposes, and as adhesives. Dentists spend more time replacing existing restorations that fail than they do placing new restorations. Tooth colored restorations are difficult to differentiate from the surrounding tooth structure making them challenging to remove without damaging healthy tooth structure. Previous studies have demonstrated that CO2 lasers in conjunction with spectral feedback can be used to selectively remove composite from tooth surfaces. The purpose of this study is to assemble a system that is feasible for clinical use incorporating a spectral feedback system, a scanning system, articulating arm and a clinical handpiece and then evaluate the performance of that system on extracted teeth. In addition, the selectivity of composite removal was analyzed using a high-speed optical coherence tomography system that is suitable for clinical use. The system was capable of rapidly removing composite from small preparations on tooth occlusal surfaces with a mean loss of enamel of less than 20-μm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call