Abstract
AbstractAutomated three-dimensional (3D) modeling of building interiors for an as-built building information model (BIM) incurs critical difficulties because of the complex design of indoor structures and a variety of clutter from scanned point clouds. This paper proposes a scheme for automated 3D geometric modeling of indoor structures, including detailed components such as windows and open doors. Moreover, to produce a regularized model, we imposed constrained least-squares adjustment according to an assumption made with respect to typical indoor structures: walls, ceiling, floor, doors, and windows are composed of straight lines, either parallel or orthogonal. Modeling proceeds in two main phases: wall modeling and window modeling. In the wall modeling phase, the point-cloud acquisitions are projected onto a 2D binary image and the wall boundary is traced out. The boundary is regularized by means of the constrained least-squares method, and, thereby, a 2D floor boundary map can be obtained that later p...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.