Abstract

Cancer of the lungs is considered one of the primary causes of death among patients globally. Early detection contributes significantly to the success of pulmonary cancer treatment. To aid the pulmonary nodule classification, many models for the analysis of medical image utilizing deep learning have been developed. Convolutional neural network (CNN) recently, has attained remarkable results in various image classification tasks. Nevertheless, the CNNs performance is heavily dependent on their architectures which still heavily reliant on human domain knowledge. This study introduces a cutting-edge approach that leverages genetic algorithms (GAs) to automatically design 3D CNN architectures for differentiation between benign and malignant pulmonary nodules. The suggested algorithm utilizes the dataset of lung nodule analysis 2016 (LUNA16) for evaluation. Notably, our approach achieved exceptional model accuracy, with evaluations on the testing dataset yielding up to 95.977%. Furthermore, the algorithm exhibited high sensitivity, showcasing its robust performance in distinguishing between benign and malignant nodules. Our findings demonstrate the outstanding capabilities of the proposed algorithm and show an outstanding performance and attain a state of art solution in lung nodule classification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call