Abstract

AbstractModular composites with a 3D periodic structure, consisting of a major brittle inorganic phase (building blocks) and a minor viscoelastic organic matrix, offer great potentials for improved fracture toughness and failure probability in polymer‐ceramic composites. Alumina building blocks with dimensions of 1500 μm were assembled by a novel placing system equipped with an automatic optical inspection (AOI) system. The AOI system coupled with shape recognition enables simultaneous dimensional characterization, tolerance sorting, and flexible placing of different shaped building blocks. 3D periodic structures with cubic, monoclinic, and triclinic unit cells were fabricated by high accuracy placing of cubic building blocks enabling near‐net shape manufacturing. The placing precision of the assembled structures was determined by μCT to have a maximum deviation of ±78 μm. The structures were afterward infiltrated with a soft epoxy resin to fabricate epoxy‐alumina composites. The brick‐and‐mortar like building block arrangements of the monoclinic and triclinic structures exhibited improved bending strength, fracture toughness, and failure probability compared to monolithic epoxy, due to crack deflection and pull‐out toughening mechanisms. A maximum bending strength of 35.1 ± 7.5 MPa, a work‐of‐fracture of 814.7 ± 255.1 J/m² and a calculated fracture toughness of 4.8 ± 0.8 MPa for the triclinic structures was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.