Abstract

Echocardiography, a critical tool for assessing left atrial (LA) volume, often relies on manual or semi-automated measurements. This study introduces a fully automated, real-time method for measuring LA volume in both 2-D and 3-D imaging, in the aim of offering accuracy comparable to that of expert assessments while saving time and reducing operator variability. We developed an automated pipeline comprising a network to identify the end-systole (ES) time point and robust 2-D and 3-D U-Nets for segmentation. We employed data sets of 789 2-D images and 286 3-D recordings and explored various training regimes, including recurrent networks and pseudo-labeling, to estimate volume curves. Our baseline results revealed an average volume difference of 2.9 mL for 2-D and 7.8 mL for 3-D, respectively, compared with manual methods. The application of pseudo-labeling to all frames in the cine loop generally led to more robust volume curves and notably improved ES measurement in cases with limited data. Our results highlight the potential of automated LA volume estimation in clinical practice. The proposed prototype application, capable of processing real-time data from a clinical ultrasound scanner, provides valuable temporal volume curve information in the echo lab.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call