Abstract
Echocardiography, a critical tool for assessing left atrial (LA) volume, often relies on manual or semi-automated measurements. This study introduces a fully automated, real-time method for measuring LA volume in both 2-D and 3-D imaging, in the aim of offering accuracy comparable to that of expert assessments while saving time and reducing operator variability. We developed an automated pipeline comprising a network to identify the end-systole (ES) time point and robust 2-D and 3-D U-Nets for segmentation. We employed data sets of 789 2-D images and 286 3-D recordings and explored various training regimes, including recurrent networks and pseudo-labeling, to estimate volume curves. Our baseline results revealed an average volume difference of 2.9 mL for 2-D and 7.8 mL for 3-D, respectively, compared with manual methods. The application of pseudo-labeling to all frames in the cine loop generally led to more robust volume curves and notably improved ES measurement in cases with limited data. Our results highlight the potential of automated LA volume estimation in clinical practice. The proposed prototype application, capable of processing real-time data from a clinical ultrasound scanner, provides valuable temporal volume curve information in the echo lab.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.