Abstract

3-valued models have been advocated as a means of system abstraction such that verifications and refutations of temporal-logic properties transfer from abstract models to the systems they represent. Some application domains, however, require multiple models of a concrete or virtual system. We build the mathematical foundations for 3-valued property verification and refutation applied to sets of common concretizations of finitely many models. We show that validity checking for the modal mu-calculus has the same cost (EXPTIME-complete) on such sets as on all 2-valued models, provide an efficient algorithm for checking whether common concretizations exist for a fixed number of models, and propose using parity games on variants of tree automata to efficiently approximate validity checks of multiple models. We prove that the universal topological model in [M. Huth, R. Jagadeesan, and D. A. Schmidt. A domain equation for refinement of partial systems. Mathematical Structures in Computer Science, 14(4):469–505, 5 August 2004] is not bounded complete. This confirms that the approximations aforementioned are reasonably precise only for tree-automata-like models, unless all models are assumed to be deterministic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.