Abstract

Microorganisms usually coexist as a multifaceted polymicrobial community in the natural habitats and at mucosal sites of the human body. Two opportunistic human pathogens, Pseudomonas aeruginosa and Staphylococcus aureus commonly coexist in the bacterial infections for hospitalized and/or immunocompromised patients. Here, we observed that autolysis of the P. aeruginosa quorum-sensing (QS) mutant (lasRmvfR) was suppressed by the presence of the S. aureus cells in vitro. The QS mutant still displayed killing against S. aureus cells, suggesting the link between the S. aureus-killing activity and the autolysis suppression. Independent screens of the P. aeruginosa transposon mutants defective in the S. aureus-killing and the S. aureus transposon mutants devoid of the autolysis suppression revealed the genetic link between both phenotypes, suggesting that the iron-dependent metabolism involving S. aureus exoproteins might be central to both phenotypes. The autolysis was suppressed by iron treatment as well. These results suggest that the interaction between P. aeruginosa and S. aureus might be governed by mechanisms that necessitate the QS circuitry as well as the metabolism involving the extracellular iron resources during the polymicrobial infections in the human airway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call