Abstract

While the simian immunodeficiency virus (SIV)-infected rhesus monkey is an important animal model for human immunodeficiency virus type 1 (HIV-1) infection of humans, much remains to be learned about the evolution of the humoral immune response in this model. In HIV-1 infection, autologous neutralizing antibodies emerge 2 to 3 months after infection. However, the ontogeny of the SIV-specific neutralizing antibody response in mucosally infected animals has not been defined. We characterized the kinetics of the autologous neutralizing antibody response to the transmitted/founder SIVmac251 using a pseudovirion-based TZM-bl cell assay and monitored env sequence evolution using single-genome amplification in four rhesus animals that were infected via intrarectal inoculations. We show that the SIVmac251 founder viruses induced neutralizing antibodies at 5 to 8 months after infection. Despite their slow emergence and low titers, these neutralizing antibodies selected for escape mutants that harbored substitutions and deletions in variable region 1 (V1), V2, and V4 of Env. The neutralizing antibody response was initially focused on V4 at 5 to 8 months after infection and then targeted V1/V2 and V4 by 16 months. These findings reveal a striking delay in the development of neutralizing antibodies in SIVmac-infected animals, thus raising questions concerning the suitability of SIVmac251 as a challenge strain to screen AIDS vaccines that elicit neutralizing antibodies as a means to prevent virus acquisition. They also illustrate the capacity of the SIVmac quasispecies to modify antigenic determinants in response to very modest titers of neutralizing antibodies.

Highlights

  • While the simian immunodeficiency virus (SIV)-infected rhesus monkey is an important animal model for human immunodeficiency virus type 1 (HIV-1) infection of humans, much remains to be learned about the evolution of the humoral immune response in this model

  • To characterize the autologous neutralizing antibody response and the env sequence evolution in animals that acquired infection mucosally, we infected a cohort of rhesus monkeys with SIVmac251 via repeated, low-dose intrarectal inoculations [39]

  • Using a standardized pseudovirion-based TZM-bl reporter gene assay that is widely used to measure neutralizing antibodies to HIV-1, we demonstrated that autologous neutralizing antibodies directed against the transmitted/founder SIVmac251 strains were not detected until 5 to 8 months p.i. in mucosally infected monkeys

Read more

Summary

Introduction

While the simian immunodeficiency virus (SIV)-infected rhesus monkey is an important animal model for human immunodeficiency virus type 1 (HIV-1) infection of humans, much remains to be learned about the evolution of the humoral immune response in this model. High titers of HIVspecific autologous neutralizing antibodies usually emerge as late as 2 to 3 months after infection and continue to evolve throughout the first years of infection [18, 25, 57, 66, 74] Such neutralizing antibodies have been shown to influence HIV-1 evolution within a host and to be responsible for viral escape mutations [47, 48, 58, 59]. We hypothesized that a low titer of SIVmac Env-specific neutralizing antibodies exerts potent selection pressure on the viral quasispecies To test this hypothesis, we utilized a pseudovirionbased TZM-bl reporter gene neutralization assay and single genome amplification (SGA) in order to characterize the humoral immune pressures driving viral sequence evolution in four rhesus monkeys that were infected with SIVmac251 via intrarectal inoculations

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call