Abstract
IntroductionCritical-sized defect (CSD) is one of the most challenging cases for orthopaedic surgeons. We aim to explore the therapeutic potential of the combination of bone marrow-derived mesenchymal stem cells (BM-MSCs), hydroxyapatite (HA) granules, bone morphogenetic protein-2 (BMP-2), and internal fixation for treating CSDs.MethodsThis was a translational study performed during the period of January 2012 to 2016. Subjects were patients diagnosed with CSDs who had previously failed surgical attempts. They were treated with the combination of autologous BM-MSCs, HA granules, BMP-2, and mechanical stabilization. Post-operative pain level, functional outcome, defect volume, and radiological healing were evaluated after a minimum follow-up of 12 months.ResultsA total of six subjects were recruited in this study. The pain was significantly reduced in all cases; with the decrease of mean preoperative visual analog scale (VAS) from 4 ± 2.2 to 0 after six month follow-up. Clinical functional outcome percentage increased significantly from 25 ± 13.7 to 70.79 ± 19.5. Radiological healing assessment using Tiedemann score also showed an increase from 0.16 ± 0.4 to 8 ± 3 at one year follow-up. No immunologic nor neoplastic side effects were found.ConclusionsThe combination of autologous BM-MSCs, HA granules, and BMP-2 is safe and remains to be a good option for the definitive treatment for CSD with previous failed surgical attempts. Further studies with a larger sample size are required to be done.
Highlights
Critical-sized defect (CSD) is one of the most challenging cases for orthopaedic surgeons
CSDs are difficult to characterize as the diagnosis is subjective [3]
The purpose of this study is to present the experience of the authors in treating six cases of CSDs using the combination of MSCs, HA granules, bone morphogenetic protein-2 (BMP-2), and internal fixation in treating CSD
Summary
Critical-sized defect (CSD) is one of the most challenging cases for orthopaedic surgeons. We aim to explore the therapeutic potential of the combination of bone marrow-derived mesenchymal stem cells (BM-MSCs), hydroxyapatite (HA) granules, bone morphogenetic protein-2 (BMP-2), and internal fixation for treating CSDs. Segmental defects in bone remain an ongoing challenge for orthopaedic surgeons [1]. Known as critical-sized defects (CSDs), may not heal spontaneously and lead to nonunion prognosis due to the size of defects or unstable biomechanical properties, unfavourable wound environment, suboptimal surgical technique, metabolic factors, hormones, nutrition, and applied stress [2]. Bone grafts or substitute biomaterials are commonly used as therapeutic strategies for clinical bone surgery to fill the bone defects for International Orthopaedics (SICOT) (2019) 43:1509–1519 reconstructing large bone segments [2]. Major drawbacks are associated with this approach, such as additional anaesthetic time and personnel needed for graft harvesting [8,9,10], limited quantity of the graft and access to donor sites, and immune-mediated rejection [5, 8, 11,12,13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.