Abstract
The use of autologous fibrin matrices has been proposed as a therapeutic strategy for the local and physiological delivery of growth factors in the treatment of several clinical conditions requiring tendon healing or tendon graft remodelling. In the present work, we investigated the proliferation, synthesis of type-I collagen and angiogenic factors by tendon cells seeded on platelet-rich (PR) and platelet-poor (PP) matrices. Furthermore, in vivo cellular and vascular effects of each treatment were examined after infiltration in Achilles tendon in sheep. Results showed that the presence of platelets within the fibrin matrices increased significantly the proliferation of tendon cells. Additionally, cultured tendon cells synthesised type I collagen and angiogenic factors such as VEGF and HGF. The synthesis of VEGF, but not of HGF, was significantly higher when platelets were present within the matrix. In the sheep model, the injection of pre-clotted plasma within tendons increased cellular density and promoted neovascularization. These results indicate that administration of fibrin matrices is a safe and easy strategy that may open new avenues for enhancing tissue healing and remodelling and influences the process of regeneration in clinical situations characterised by a poor healing outcome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.