Abstract

BackgroundScarring is the product of natural restoration, yet its treatment remains challenging. Both collagen and fibroblasts are abnormally abundant in scars, leading to scar hyperplasia or contracture. Several clinical studies have reported that wrinkles at the recipient site are reduced, pores are narrowed, pigmentation is decreased, and skin is softened after autologous fat transplantation. In this study, we investigated the ability of autologous chyle fat injection to normalize the fibroblasts and collagen of scar tissue in 80 adult patients with hypertrophic scars resulting from severe burns received more than 1 year previously.MethodsThe patients underwent autologous chyle fat injection, and scar samples were collected at different time points. Differences in the number of adipocytes before and after chylosis were assessed by cell culture, and changes in the structural organization of the scars were detected via histologic and immunohistochemical analyses.ResultsAfter preparation, the chyle fat contained few autologous adipocytes and large amounts of extracellular matrix. Following the injection of chyle fat, the thickness, color, and elasticity of hypertrophic scar tissue tended toward normalization, and patient satisfaction increased. The three adipose tissue donor sites used for the preparation of chyle fat were the abdomen, buttocks, and inner thigh, of which the inner thigh yielded the best therapeutic outcomes. The density and quantity of fibroblasts in the scars decreased following the injection of chyle fat, and the arrangement, quantity, and shape of type III collagen fibers tended toward normalization. After three treatments, the results of immunohistochemical staining showed that type III collagen was significantly less abundant than before treatment.ConclusionsAutologous chyle fat transplantation has a good therapeutic effect on hypertrophic scar tissue. The injection of chyle fat into hypertrophic scar tissue reduced the density and quantity of fibroblasts and prompted the arrangement, quantity, and shape of type III collagen to normalize.

Highlights

  • Scarring is the product of natural restoration, yet its treatment remains challenging

  • Yun et al [11] found that adipose-derived stem cell (ADSC) help to inhibit the proliferation of scar tissue by reducing the activity of myofibroblasts and mast cells, preventing transforming growth factor-β1 (TGF-β1) from stimulating fibroblasts (Fbs), and promoting scar collagenous tissue shaping via matrix metalloproteinase-1 expression

  • There was partial recurrence; that is, part of the scar readhered to the underlying fascia

Read more

Summary

Introduction

Scarring is the product of natural restoration, yet its treatment remains challenging. Basic and clinical studies have shown that autologous fat particle transplantation stimulates the regeneration of the dermis and hypodermis and improves the elasticity and extension of scar tissue [9]. Yun et al [11] found that ADSCs help to inhibit the proliferation of scar tissue by reducing the activity of myofibroblasts and mast cells, preventing transforming growth factor-β1 (TGF-β1) from stimulating fibroblasts (Fbs), and promoting scar collagenous tissue shaping via matrix metalloproteinase-1 expression. These actions have important effects on the formation and reshaping of scars

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.