Abstract

BackgroundInsulin resistance and insulin deficiency are the cardinal defects in the pathogenesis of type 2 diabetes mellitus (T2DM). Despite the plethora of anti-diabetic medications, drugs specifically targeting the β-cells are still desired. Stem cell therapy has emerged as a novel therapeutics strategy to target β-cells; however, their mechanism of action has not been well defined. This study aims to examine the efficacy and safety of autologous bone marrow-derived mononuclear cells (ABM-MNCs) transplantation in T2DM, and explores the mechanistic insights into stem cells action through metabolic studies.MethodsSeven T2DM patients with the duration of disease ≥5 years, receiving triple oral anti-diabetic drugs along with insulin (≥0.4 IU per kg per day) and HbA1c ≤ 7.5% (≤58.0 mmol/mol) were enrolled for ABM-MNCs administration through a targeted approach. The primary end-point was a reduction in insulin requirement by ≥50% from baseline, while maintaining HbA1c < 7.0% (<53.0 mmol/mol) with improvement in insulin secretion, and/or insulin sensitivity after ABM-MNCs transplantation.ResultsSix out of 7 (90%) patients achieved the primary end-point. At 6 months, there was a significant reduction in insulin requirement by 51% as compared to baseline (p < 0.003). This was accompanied by a significant increase in the 2nd phase C-peptide response during hyperglycemic clamp (p = 0.018), whereas there were no significant alterations in insulin sensitivity and glucose disposal rate during hyperinsulinemic–euglycemic clamp relative to the baseline. Other measures of β-cell indices like HOMA-β, and stimulated C-peptide response to glucagon and mixed meal tolerance test were non-contributory.ConclusionABM-MNCs transplantation results in significant reduction in insulin doses and improvement in C-peptide response in patients with T2DM. Metabolic studies may be more useful than conventional indices to predict β-cell function in patients with advanced duration of T2DM.Trial registration-Clinicaltrials.gov NCT01759823

Highlights

  • Insulin resistance and insulin deficiency are the cardinal defects in the pathogenesis of type 2 diabetes mellitus (T2DM)

  • Many patients require a combination of multiple drugs and/or insulin therapy targeting different pathogenetic mechanisms. These therapies help to maintain glycemic control but do not reverse the pathophysiology of the disease, as drugs targeting β-cells are still lacking [1]. This has prompted the clinical investigators to explore the newer therapeutic strategies like cell-based therapy, such as bone marrow-derived adult stem cells, which comprises of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs)

  • The median volume of the bone marrow harvested for transplantation was 224.0 (213.0–227.0) mL, which yielded 1.2 (1.0–1.4) × 109 mononuclear cells (MNCs) (Additional file 1: Table S1) and 2.0 (0.8–2.3) × 107 of these MNCs expressed ­CD34+

Read more

Summary

Introduction

Insulin resistance and insulin deficiency are the cardinal defects in the pathogenesis of type 2 diabetes mellitus (T2DM). Despite the plethora of anti-diabetic medications, drugs targeting the β-cells are still desired. Many patients require a combination of multiple drugs and/or insulin therapy targeting different pathogenetic mechanisms. These therapies help to maintain glycemic control but do not reverse the pathophysiology of the disease, as drugs targeting β-cells are still lacking [1]. This has prompted the clinical investigators to explore the newer therapeutic strategies like cell-based therapy, such as bone marrow-derived adult stem cells, which comprises of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.