Abstract

Insufficient post-traumatic skeletal muscle regeneration with consecutive functional deficiency continues to be a serious problem in orthopedic and trauma surgery. Transplantation of autologous muscle precursor cells has shown encouraging results in muscle trauma treatment but is associated with significant donor site morbidity. In contrast to this, bone marrow-derived (BMD) cells can be obtained without any functional deficit by puncture. The goal of this study was to examine whether regular muscle regeneration can be improved by local application of autologous BMD cells in a rat model of blunt skeletal muscle trauma. One week after standardized open blunt crush injury to the left soleus muscle, 10(6) autologous BMD cells were injected into the traumatized muscle of male Sprague Dawley rats. Rats of the control group received saline solution as treatment. Three weeks after application, the fast twitch and tetanic contraction capacity of the soleus muscles was measured bilaterally by stimulating the sciatic nerves. Contraction forces of injured soleus muscles in control animals recovered to 39 +/- 10% (tetanic) and 59 +/- 12% (fast twitch) of the contralateral noninjured soleus muscles (p < 0.001). In contrast, autologous BMD cell injection significantly restored contractile forces to 53 +/- 8% (tetanic) and 72 +/- 13% (fast twitch) compared to those observed in contralateral noninjured soleus muscles. Thus, muscle function was significantly increased by BMD cell treatment (tetanic, p = 0.014; fast twitch, p = 0.05). In conclusion, autologous BMD cell grafting leads to an increase in contraction force, 14% in tetanic and 13% in fast twitch stimulation, demonstrating its potential to improve functional outcome after skeletal muscle crush injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.