Abstract

To explore the molecular mechanism of autologous blood transfusion promoting autophagy of hepatocellular carcinoma (HCC) cells and inhibiting the HCC progression through HIF-1α signalling pathway. This is a research paper. Rat hepatocellular carcinoma model and HepG2 cell model were built. The rats with HCC were conducted a surgery, and their blood was collected for detection to detect the recurrence and metastasis of the rats. Western blot was used to analysed the expression of HIF-1α, TP53, MDM2, ATG5 and ATG14 protein. The apoptosis rate of HepG2 cells was detected by flow cytometry, and autophagosomes were observed by transmission electron microscopy. HIF-1α expression was measured by immunofluorescence assay. The expressions of HIF-1α, TP53, MDM2, ATG5 and ATG14 protein were highest in model + autoblood group compared with the model group. HIF-1α content of model group was higher, but content of TP53, MDM2, ATG5 and ATG14 in the model group is the second. The highest apoptosis rate was found in HepG2 + autoblood group. The number of autophagosomes in HepG2 + autoblood was obviously larger than that of HepG2 + autoblood + inhibitor. HIF-1α expression of immunofluorescence assay showed that high expression of HIF-1α was clearly observed in HepG2 and HepG2 + autoblood group from confocal observation. However, there was no HIF-1α protein expression in HepG2 + autoblood + inhibitor group. The migration rate in HepG2 group, HepG2 + autoblood group and HepG2 + autoblood + inhibitor group was 85.71 ± 7.38%, 14.36 ± 6.54% and 61.25 ± 5.39%, respectively. Autologous blood transfusion promotes autophagy of HCC cells through HIF-1α signalling pathway, which further inhibits HCC migration and erosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call