Abstract
Modeling the contagious distribution of vegetation and species in ecology and biogeography has been a challenging issue. Previous studies have demonstrated that the autologistic regression model is a useful approach for describing the distribution because patial correlation can readily be accounted for in the model. So far studies have been mainly restrained to the first-orderautologistic model. However, the first-order correlationmodel may sometimes be insufficient as long-range dispersal/migration can play a significant role in species distribution. In this study, we used the second-order autologistic regression model to model the distributions of the subarctic evergreen woodland and the boreal evergreen forest in British Columbia, Canada, in terms of climate covariates. We investigated and compared three estimation methods for the second-ordermodel—the maximum pseudo-likelihood method, the Monte Carlo likeli hood method, and the Markov chain Monte Carlo stochasti capproximation. Detailed procedures for these methods were developed and their performances were evaluated through simulations. The study demonstrates the importance for including the second-order correlation in the autologistic model for modeling vegetation distribution at the large geographical scale; each of the two vegetations studied was strongly autocorrelated not only in the south-north direction but also in the north west-southeast direction. The study further concluded that the assessment of climate change should be performed on the basis of individual vegetation or species because different vegetation or species likely respond differently to different sets of climate variables.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Agricultural, Biological, and Environmental Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.