Abstract

Catalytic activity of eNOS is regulated by multiple posttranscriptional mechanisms, including a 40-amino acid (604-643) autoinhibitory domain (AID) located in the reductase domain of the eNOS protein. We examined whether an exogenous synthetic AID, an 11-amino acid (626-636) fragment of AID (AAF), or scrambled AAF (AAF-SR), enhanced eNOS activity and NO-cGMP-mediated vasorelaxation using pulmonary artery (PA) endothelial/smooth muscle cell (PAEC/PASM) coculture, isolated PA segment, and isolated lung perfusion models. Incubation of isolated total membrane fraction of PAEC with AID or AAF resulted in concentration-dependent loss of eNOS activity. In contrast, incubation of intact PAEC with AID or AAF but not AAF-SR caused concentration- and time-dependent activation of eNOS. Because AID and AAF had similar effects on activation of eNOS, AAF and AAF-SR were used for further evaluation. Although AAF stimulation increased catalytic activity of PKC-alpha in PAEC, AAF-mediated activation of eNOS was independent of phosphorylation of Ser1177 or Thr495 and/or expression of eNOS protein. AAF stimulation of PAEC increased NO and cGMP production, which were attenuated by pretreatment with the eNOS inhibitor l-NAME. AAF caused time-dependent vasodilation of U-46619-precontracted endothelium-intact but not endothelium-denuded PA segments, and this response was attenuated by l-NAME. AAF, but not AAF-SR, also caused vasorelaxation in an ex vivo isolated mouse lung perfusion model precontracted with U-46619. Incubation with fluorescence-labeled AAF demonstrated translocation of AAF in PAEC in culture, isolated PA, and isolated intact lungs. These results demonstrate that AAF-stimulated vasodilation is mediated via activation of eNOS and enhanced NO-cGMP production in PA and intact lung.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call