Abstract

The reliable production of heterologous proteins is important in the field of industrial biotechnology. This can be achieved by applying auto-inducible gene expression systems. The development of a Bacillus subtilis expression plasmid harboring SigB-dependent ohrB promoter was reported. The expression system was subjected to high cell density cultivation to produce xylanase as a stable model protein. The recombinant strain was cultured in a synthetic medium containing glucose as the carbon source. The exponential fed-batch feeding strategy was applied to prevent substrate inhibition. A sharp increase of xylanase activity (about 6-fold) at the end of the fermentation was observed as a result of sigma factor B (SigB) protein activation, supporting auto-inducibility of the expression system. For the control strain a specific induction of the xylanase activity was not observed. The recombinant strain was capable to offer a 5-fold increase in xylanase activity in comparison with the control strain. In addition, the constructed system displayed catabolite repression resistance ability. This SigB-dependent expression system can be considered as a biotechnology tool and an alternative to eliminate the cost of conventional inducers, e.g. isopropyl-β-galactopyranoside.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.