Abstract

It is widely believed that autoimmunity is an integral part of the immune system, and that genetic, immunologic, hormonal, environmental and other factors contribute to the pathogenesis of autoimmune disease. Thus, autoimmune disease may represent an abnormal expression of immune functions instead of loss of tolerance to self, and it can be organ specific or systemic in its manifestations. We review the various factors that contribute to the development of autoimmune disease; we also review the mechanisms of polyclonal B-cell activation, with emphasis on the role of infectious agents. We consider systemic lupus erythematosus in humans and in experimental animals as prototypic autoimmune disease, and we summarize data to indicate that polyclonal B-cell activation is central to the pathogenesis of systemic autoimmune disease. The effect of polyclonal B-cell activation, brought about by injections of a B-cell activator-lipopolysaccharide from Gram-negative bacteria-is sufficient to cause autoimmune disease in an immunologically normal host. In fact, autoimmune disease can be arrested if excessive polyclonal B-cell activation is suppressed; alternatively, autoimmune disease can be exacerbated if polyclonal B-cell activation is enhanced. We explore the mechanism of tissue injury when autoimmune disease is induced or exacerbated, and we consider the pathogenic roles of autoantibodies, immune complexes, complement, the blood cell carrier system, and the mononuclear phagocyte system. Although polyclonal B-cell activation may be the mechanism whereby various factors can cause or exacerbate systemic autoimmune disease, polyclonal B-cell activation may cause autoimmune disease on its own.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call