Abstract

Recognition of endogenous DNA and RNA by cells expressing TLR7 and TLR9 is an important contributor to the pathogenesis of systemic lupus erythematosus and has been suggested to contribute to cutaneous lupus and to a group of related inflammatory skin diseases termed interface dermatitis. We have developed a mouse model of TLR7- and TLR9-dependent skin inflammation using tape stripping. In normal mice, this resulted in a rapid but transient inflammatory cell infiltration accompanied by induction of type I IFN production by plasmacytoid dendritic cells (PDCs) and release of extracellular traps and proinflammatory cytokines by neutrophils. These responses were strongly reduced in MyD88-deficient mice and in mice treated with a bifunctional inhibitor of TLR7 and TLR9. In contrast, in lupus-prone (NZBxNZW)F(1) mice, tape stripping induced the development of chronic lesions characterized by a persistent type I IFN gene signature and many clinical and histological features of cutaneous lupus. Depletion of PDCs before injury prevented the development of skin lesions, whereas treatment with a bifunctional TLR7/9 inhibitor before tape stripping or after the initial lesion was established led to a significant reduction of the disease. These data suggest that inhibitors of TLR7 and TLR9 signaling have potential therapeutic application for the treatment of interface dermatitis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.