Abstract

Epilepsy affects ~50 million people. In ~30% of patients the etiology is unknown, and ~30% are unresponsive to anti-epileptic drugs. Intractable epilepsy often leads to multiple seizures daily or weekly, lasting for years, and accompanied by cognitive, behavioral, and psychiatric problems. This multidisciplinary scientific (not clinical) ‘Perspective’ article discusses Autoimmune Epilepsy from immunological, neurological and basic-science angles. The article includes summaries and novel discoveries, ideas, insights and recommendations. We summarize the characteristic features of the respective antigens, and the pathological activity in vitro and in animal models of autoimmune antibodies to: Glutamate/AMPA-GluR3, Glutamate/NMDA-NR1, Glutamate/NMDA-NR2, GAD-65, GABA-R, GLY-R, VGKC, LGI1, CASPR2, and β2 GP1, found in subpopulations of epilepsy patients. Glutamate receptor antibodies: AMPA-GluR3 B peptide antibodies, seem so far as the most exclusive and pathogenic autoimmune antibodies in Autoimmune Epilepsy. They kill neural cells by three mechanisms: excitotoxicity, Reactive-Oxygen-Species, and complement-fixation, and induce and/or facilitate brain damage, seizures, and behavioral impairments. In this article we raise and discuss many more topics and new insights related to Autoimmune Epilepsy. 1. Few autoimmune antibodies tilt the balance between excitatory Glutamate and inhibitory GABA, thereby promoting neuropathology and epilepsy; 2. Many autoantigens are synaptic, and have extracellular domains. These features increase the likelihood of autoimmunity against them, and the ease with which autoimmune antibodies can reach and harm these self-proteins. 3. Several autoantigens have ‘frenetic character’- undergoing dynamic changes that can increase their antigenicity; 4. The mRNAs of the autoantigens are widely expressed in multiple organs outside the brain. If translated by default to proteins, broad spectrum detrimental autoimmunity is expected; 5. The autoimmunity can precede seizures, cause them, and be detrimental whether primary or epiphenomenon; 6. Some autoimmune antibodies induce, and associate with, cognitive, behavioral and psychiatric impairments; 7. There are evidences for epitope spreading in Autoimmune Epilepsy; 8. T cells have different ‘faces’ in the brain, and in Autoimmune Epilepsy: Normal T cells are needed for the healthy brain. Normal T cells are damaged by autoimmune antibodies to Glutamate/AMPA GluR3, which they express, and maybe by additional autoantibodies to: Dopamine-R, GABA-R, Ach-R, Serotonin-R, and Adrenergic-R, present in various neurological diseases (summarized herein), since T cells express all these Neurotransmitter receptors. However, autoimmune and/or cytotoxic T cells damage the brain; 9. The HLA molecules are important for normal brain function. The HLA haplotype can confer susceptibility or protection from Autoimmune Epilepsy; 10. There are several therapeutic strategies for Autoimmune Epilepsy.

Highlights

  • Epilepsy affects 1-2% of the world population

  • Based on all the findings summarized in Part 4, Table 1 and Figure 1, and described in the corresponding cited papers, we strongly recommend testing for GluR3 pepƟde B (GluR3B) peptide autoimmune antibodies, and preferably for GluR3B peptide T cells, in all individuals with intractable epilepsy, because these autoimmune antibodies can induce multiple pathological effects, via several mechanisms of action

  • The manner by which the blood-brain barrier (BBB) was disrupted determined the affected brain region, and the type of central nervous system (CNS) impairment: Lipopolysaccharide led to antibody-mediated damage to the hippocampus and memory disturbance, while Epinephrine led to neuronal loss in the amygdala and behavioral change marked by aberrant Pavlovian fear conditioning [150, 151, 153, 163]

Read more

Summary

INTRODUCTION

Epilepsy affects 1-2% of the world population. In about 30% of individuals with epilepsy, the etiology is unknown, after ruling out genetic mutations, severe injury and several other possible causes. Based on the evidences summarized in the text of this paper, Table 1 and Figure 1, and on the corresponding original cited papers, we envision that any autoimmune antibody present in a given epilepsy patient that can directly or indirectly impair the levels, signaling and function of Glutamate or GABA, or of their receptors, enzymes, ion channels, transporters or other associated proteins, (Figure 2), can in principle be detrimental and induce or promote seizures.

Expression and Localization of the AMPA GluR3 Subunit
The Autoimmune GluR3B Peptide Antibodies
10. CAUSE-EFFECT RELATIONSHIPS AND TIMING OF AUTOIMMUNE EPILEPSY
11. INTERMOLECULAR EPITOPE SPREADING IN AUTOIMMUNE EPILEPSY
12. T CELLS HAVE DIFFERENT ‘FACES’ IN THE BRAIN AND IN AUTOIMMUNE EPILEPSY
12.1 The Healthy Brain Needs Healthy T Cells
12.3 Hypothesis
14 THERAPY-RELATED FINDINGS THAT INSPIRE HOPE
Findings
15. CONCLUDING REMARKS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.