Abstract

Autoigntion and front propagation behavior in Low Temperature Combustion (LTC) engine environments is investigated in this paper. First, non-reacting 3D engine simulations are conducted to investigate different mixture formation scenarios that might exist in LTC engines prior to autoignition. It is found that depending on the timing of fuel spray injection and the level of wall heat loss, two different scenarios might exist close to top-dead center (TDC): (1) early start of injection for which the intake stroke results in largely uncorrelated temperature (T)-equivalence ratio (�) fields mostly due to wall heat loss; (2) late start of injection for which the compression stroke results in negatively correlated T-� fields mostly due to evaporative cooling. Small-scale effects of these different mixture formation scenarios on the autoignition and subsequent front propagation are then studied using high-fidelity direct numerical simulation (DNS). For this purpose, high pressure hydrogenair mixture in constant volume with isotropic turbulence is investigated with detailed chemistry. Three cases with different initial T-� fields are studied: case (A) baseline case with just temperature inhomogeneities and a uniform equivalence ratio field, case (B) uncorrelated T-� fields and case (C) negatively-correlated T-� fields. Numerical diagnostics

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.