Abstract
Approximately 50% of development resources are devoted to user interface (UI) development tasks [ 9 ]. Occupying a large proportion of development resources, developing icons can be a time-consuming task, because developers need to consider not only effective implementation methods but also easy-to-understand descriptions. In this article, we present Auto-Icon+ , an approach for automatically generating readable and efficient code for icons from design artifacts. According to our interviews to understand the gap between designers (icons are assembled from multiple components) and developers (icons as single images), we apply a heuristic clustering algorithm to compose the components into an icon image. We then propose an approach based on a deep learning model and computer vision methods to convert the composed icon image to fonts with descriptive labels, thereby reducing the laborious manual effort for developers and facilitating UI development. We quantitatively evaluate the quality of our method in the real-world UI development environment and demonstrate that our method offers developers accurate, efficient, readable, and usable code for icon designs, in terms of saving 65.2% implementing time.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Interactive Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.