Abstract
We here present an improved version of AutoGrow (version 3.0), an evolutionary algorithm that works in conjunction with existing open-source software to automatically optimize candidate ligands for predicted binding affinity and other druglike properties. Though no substitute for the medicinal chemist, AutoGrow 3.0, unlike its predecessors, attempts to introduce some chemical intuition into the automated optimization process. AutoGrow 3.0 uses the rules of click chemistry to guide optimization, greatly enhancing synthesizability. Additionally, the program discards any growing ligand whose physical and chemical properties are not druglike. By carefully crafting chemically feasible druglike molecules, we hope that AutoGrow 3.0 will help supplement the chemist's efforts.To demonstrate the utility of the program, we use AutoGrow 3.0 to generate predicted inhibitors of three important drug targets: Trypanosoma brucei RNA editing ligase 1, peroxisome proliferator-activated receptor γ, and dihydrofolate reductase. In all cases, AutoGrow generates druglike molecules with high predicted binding affinities.AutoGrow 3.0 is available free of charge (http://autogrow.ucsd.edu) under the terms of the GNU General Public License and has been tested on Linux and Mac OS X.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.