Abstract

Determination of a realistic model for the estimation of autogenous shrinkage in plain cement mixtures has been an ongoing research among researchers in high performance concrete. While no standard test method exists for the determination of autogenous shrinkage, various researchers have designed different test methods for measurement of autogenous shrinkage. Current study involved the experimental determination of autogenous shrinkage using the test method developed by O.M.Jensen and co-workers, complimented with non-contact eddy current sensors. Measurements were conducted from as early as 1.5 hours from the time of casting. The samples were placed in a constant temperature chamber and the temperature of the sample was also monitored using a thermocouple. The study was carried out on plain cement mixtures at three water cement ratios of 0.25, 0.32 and 0.38. Measurements were also conducted on simple sealed prismatic samples but these measurements could only be collected after 24 hours of casting. The work is supplemented with CEMHYD3D simulations of the samples at similar water-cement ratios under sealed conditions so as to understand the development of the microstructure of the cement responsible for autogenous shrinkage. While experimental determination of internal relative humidity is quite difficult, data regarding chemical shrinkage, amount of water left and the development of the discontinuous capillary network from the simulations help to understand the determined experimental values of autogenous shrinkage. A detailed explanation on the causes of autogenous shrinkage and the basic mechanism responsible for it has been presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call