Abstract
Adaptation of Escherichia coli at low temperature implicates a drastic reprogramming of gene expression patterns. Mechanisms operating downstream of transcription initiation, such as control of transcription termination, mRNA stability and translatability, play a major role in controlling gene expression in the cold acclimation phase. It was previously shown that Rho-dependent transcription termination within pnp, the gene encoding polynucleotide phosphorylase (PNPase), was suppressed in pnp nonsense mutants, whereas it was restored by complementation with wild type allele. Using a tRNA gene as a reporter and the strong Rho-dependent transcription terminator t ( imm ) of bacteriophage P4 as a tester, here we show that specific sites in the 5'-untranslated region of pnp mRNA are required for PNPase-sensitive cold-induced suppression of Rho-dependent transcription termination. We suggest that suppression of Rho-dependent transcription termination within pnp and its restoration by PNPase is an autogenous regulatory circuit that modulates pnp expression during cold acclimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.