Abstract

Holographic reconstruction is affected by the phase-conjugate wave arising from the symmetry of the complex field. Compressive sensing (CS) has been used in in-line digital holography (DH) to eliminate noise, especially the interference from twin images. Herein, CS with total variation regularization combining autofocusing is presented. It provides an autofocusing function from a single-exposure hologram and obtains reconstructed objects without twin image noise. A series of images at a fixed interval within a reconstruction distance are processed using a two-step iterative shrinkage/thresholding algorithm in CS. It can calculate the focus distance in a larger range around the focal plane using twin-image-free reconstruction, so it can achieve a higher focusing accuracy than traditional focusing methods, including the Laplace operator, absolute gradient operator, and Tamura coefficient. The proposed method is a simple combination of algorithms and a powerful extension that can effectively improve simulated and experimental image quality and handle difficult datasets, which existing algorithms cannot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.