Abstract

Holographic reconstruction is affected by the phase-conjugate wave arising from the symmetry of the complex field. Compressive sensing (CS) has been used in in-line digital holography (DH) to eliminate noise, especially the interference from twin images. Herein, CS with total variation regularization combining autofocusing is presented. It provides an autofocusing function from a single-exposure hologram and obtains reconstructed objects without twin image noise. A series of images at a fixed interval within a reconstruction distance are processed using a two-step iterative shrinkage/thresholding algorithm in CS. It can calculate the focus distance in a larger range around the focal plane using twin-image-free reconstruction, so it can achieve a higher focusing accuracy than traditional focusing methods, including the Laplace operator, absolute gradient operator, and Tamura coefficient. The proposed method is a simple combination of algorithms and a powerful extension that can effectively improve simulated and experimental image quality and handle difficult datasets, which existing algorithms cannot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.