Abstract

Synthetic aperture sonar (SAS) suffers from a fundamental problem: The navigation data accuracy required for coherent summation of the echo signals is not directly achievable. Unamended this issue leads to heavily blurred images. Fortunately, under certain conditions, algorithms like displaced phase center antenna (DPCA) can be used to fine tune the navigation from the raw echo data itself. In contrary to DPCA, strip-map phase gradient autofocus (SPGA) is an algorithm which extracts residual phase errors from processed synthetic aperture images. The results can be used to correct and reprocess the raw data yielding images with reduced blurring. In the presence of overlapping phase centers in raw data, as required for data driven micro navigation like DPCA, some assumptions of SPGA are violated and can cause degradation of it's results. In this paper we investigate the effect of overlapping (redundant) phase centers (RPC) in raw data on the performance of SPGA. Results indicate that the use of redundant data during image formation can bias the phase information in SAS imagery and therefore affects SPGA focusing. In this case, side lobe levels in the focused images are increased compared to images processed without RPCs. Suitable selection schemes should be employed prior to processing to avoid biasing of the phase information due to data collected at redundant phase centers if SPGA processing on top of DPCA is required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call