Abstract

Our understanding of chronic pain and the underlying molecular mechanisms remains limited due to a lack of tools to identify the complex phenomena responsible for exaggerated pain behaviours. Furthermore, currently there is no objective measure of pain with current assessment relying on patient self-scoring. Here, we applied a fully biologically unsupervised technique of hyperspectral autofluorescence imaging to identify a complex signature associated with chronic constriction nerve injury known to cause allodynia. The analysis was carried out using deep learning/artificial intelligence methods. The central element was a deep learning autoencoder we developed to condense the hyperspectral channel images into a four- colour image, such that spinal cord tissue based on nerve injury status could be differentiated from control tissue.This study provides the first validation of hyperspectral imaging as a tool to differentiate tissues from nerve injured vs non-injured mice. The auto-fluorescent signals associated with nerve injury were not diffuse throughout the tissue but formed specific microscopic size regions. Furthermore, we identified a unique fluorescent signal that could differentiate spinal cord tissue isolated from nerve injured male and female animals. The identification of a specific global autofluorescence fingerprint associated with nerve injury and resultant neuropathic pain opens up the exciting opportunity to develop a diagnostic tool for identifying novel contributors to pain in individuals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call