Abstract

Optical bioimaging is an indispensable tool in modern biology and medicine, but the technique is susceptible to autofluorescence interference. Persistent nanophosphors provide an easy-to-perform and highly efficient means to eliminate tissue autofluorescence. However, direct synthesis of persistent nanophosphors with tunable properties to meet different bioimaging requirements remains largely unexplored. In this work, zinc gallogermanate (Zn1+xGa2-2xGexO4:Cr, 0 ≤ x ≤ 0.5, ZGGO:Cr) persistent luminescence nanoparticles with composition-dependent size and persistent luminescence are reported. The size of the ZGGO:Cr nanoparticles gradually increases with the increase of x in the chemical formula. Moreover, the intensity and decay time of persistent luminescence in ZGGO:Cr nanoparticles can also be fine-tuned by simply changing x in the formula. In vivo bioimaging tests demonstrate that ZGGO:Cr nanoparticles can efficiently eliminate tissue autofluorescence, and the nanoparticles also show good promise in long-term bioimaging as they can be easily reactivated in vivo. Furthermore, an aptamer-guided ZGGO:Cr bioprobe is constructed, and it displays excellent tumor-specific accumulation. The ZGGO:Cr nanoparticles are ideal for autofluorescence-free targeted bioimaging, indicating their great potential in monitoring cellular networks and construction of guiding systems for surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call