Abstract
Transgenic mice expressing a tyrosine hydroxylase-human (h) GH fusion gene in the hypothalamus exhibit a dwarf phenotype. The GH feedback mechanism(s) underlying the growth retardation in these animals was investigated by assessing peptide and messenger RNA (mRNA) levels of the hormones of the hypothalamic-GH-IGF-I axis. Pituitary GH content, hypothalamic GH-releasing hormone (GHRH) and somatostatin (SRIH) content, and serum IGF-I levels were measured by RIA. mRNA levels of hypothalamic GHRH and SRIH and of pituitary GH and the GHRH receptor were measured by Northern blot hybridization. Transgenic mice of both sexes and their wild-type littermates were studied at 2-4 months of age. The pituitary GH content was markedly reduced by 85% in male and by 87% in female transgenic mice compared to that in wild-type controls (P < 0.01 for both). The pituitary GH mRNA content was also decreased by 73% (P = 0.002) in transgenic male mice. Circulating IGF-I levels were significantly reduced by 66% and 68% in male and female transgenic mice, respectively (P = 0.001). The hypothalamic GHRH content was significantly reduced by 19% and 33% (P < 0.05) in male and female transgenic mice, respectively. No significant difference was detected, however, in the hypothalamic SRIH content between wild-type and transgenic mice. Hypothalamic GHRH mRNA levels were significantly decreased by 35% (P = 0.002) in transgenic male mice compared to those in wild-type littermates. In contrast, SRIH mRNA was not significantly changed. An even greater reduction (61%; P = 0.003) was observed in pituitary GHRH receptor mRNA in transgenic mice. These data indicate that the GH deficiency and dwarf phenotype of the tyrosine hydroxylase-hGH transgenic mouse can be attributed primarily to impaired hypothalamic GHRH production. The mechanism of GH feedback inhibition appears to involve direct suppression of GHRH gene expression by locally produced hGH in the hypothalamus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.