Abstract

In this paper, we show that for every finite group with cyclic Sylow p-subgroups the principal p-block B is rigid with respect to the trivial simple module. This means that each autoequivalence which fixes the trivial simple module fixes the isomorphism class of each finitely generated B-module. As a consequence each augmentation preserving automorphism of the integral group ring of PSL(2, p), p a rational prime, is given by a group automorphism followed by a conjugation in QPSL(2, p). In particular this proves a conjecture of Zassenhaus for these groups. Finally we show the same statement for a couple of other simple groups by different methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.