Abstract
Textual emotion detection is a challenge in computational linguistics and affective computing study as it involves the discovery of all associated emotions expressed within a given piece of text. It becomes an even more difficult problem when applied to conversation transcripts, as we need to model the spoken utterances between speakers, keeping in mind the context of the entire conversation. In this paper, we propose a semisupervised multilabel method of predicting emotions from conversation transcripts. The corpus contains conversational quotes extracted from movies. A small number of them are annotated, while the rest are used for unsupervised training. We use the word2vec word-embedding method to build an emotion lexicon from the corpus and to embed the utterances into vector representations. A deep-learning autoencoder is then used to discover the underlying structure of the unsupervised data. We fine-tune the learned model on labeled training data, and measure its performance on a test set. The experiment result suggests that the method is effective and is only slightly behind human annotators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.