Abstract

The proliferation of novel attacks and growing amounts of data has caused practitioners in the field of network intrusion detection to constantly work towards keeping up with this evolving adversarial landscape. Researchers have been seeking to harness deep learning techniques in efforts to detect zero-day attacks and allow network intrusion detection systems to more efficiently alert network operators. The technique outlined in this work uses a one-class training process to shape autoencoder feature residuals for the effective detection of network attacks. Compared to an original set of input features, we show that autoencoder feature residuals are a suitable replacement, and often perform at least as well as the original feature set. This quality allows autoencoder feature residuals to prevent the need for extensive feature engineering without reducing classification performance. Additionally, it is found that without generating new data compared to an original feature set, using autoencoder feature residuals often improves classifier performance. Practical side effects from using autoencoder feature residuals emerge by analyzing the potential data compression benefits they provide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call