Abstract
With the increase of the scale and complexity of mechanical equipment, traditional intelligent fault diagnosis (IFD) based on shallow machine learning methods is unable to meet the demand of coupling faults. In the past decades, the vigorous development of deep learning (DL) brings new opportunities for IFD, especially the representation learning based on Autoencoder (AE) theory has been widely applied. To provide a more comprehensive reference, the theoretical foundations of multi-type AEs and the training method of stacked autoencoder (SAE) are briefly introduced. Then the application advances of AE are reviewed from optimization and combination aspects, which are aiming at improving the representation learning ability. To provide ways for the application of AE-based methods, two typical study cases for ideal and complex engineering systems are illustrated respectively. Finally, the challenges and prospects of AE-based representation learning are reported from four aspects, which give a guidance for the future research direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.