Abstract

We propose a new latent factor conditional asset pricing model. Like Kelly, Pruitt, and Su (KPS, 2019), our model allows for latent factors and factor exposures that depend on covariates such as asset characteristics. But, unlike the linearity assumption of KPS, we model factor exposures as a flexible nonlinear function of covariates. Our model retrofits the workhorse unsupervised dimension reduction device from the machine learning literature – autoencoder neural networks – to incorporate information from covariates along with returns themselves. This delivers estimates of nonlinear conditional exposures and the associated latent factors. Furthermore, our machine learning framework imposes the economic restriction of no-arbitrage. Our autoencoder asset pricing model delivers out-of-sample pricing errors that are far smaller (and generally insignificant) compared to other leading factor models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.