Abstract

AbstractThe in situ formation of an emitter in monocrystalline silicon thin‐film solar cells by solid‐state diffusion of dopants from the growth substrate during epitaxy is demonstrated. This approach, that we denote autodiffusion, combines the epitaxy and the diffusion into one single process. Layer‐transfer with porous silicon (PSI process) is used to fabricate n‐type silicon thin‐film solar cells. The cells feature a boron emitter on the cell rear side that is formed by autodiffusion. The sheet resistance of this autodiffused emitter is 330 Ω/□. An independently confirmed conversion efficiency of (14·5 ± 0·4)% with a high short circuit current density of (33·3 ± 0·8) mA/cm2 is achieved for a 2 × 2 cm2 large cell with a thickness of (24 ± 1) µm. Transferred n‐type silicon thin films made from the same run as the cells show effective carrier lifetimes exceeding 13 µs. From these samples a bulk diffusion length L > 111 µm is deduced. Amorphous silicon is used to passivate the rear surface of these samples after the layer‐transfer resulting in a surface recombination velocity lower than 38 cm/s. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.