Abstract
Low-grade inflammation associated with type 2 diabetes (T2DM) is postulated to exacerbate insulin resistance. We report that serum levels, as well as IL-13 secreted from cultured skeletal muscle, are reduced in T2DM vs. normal glucose-tolerant (NGT) subjects. IL-13 exposure increases skeletal muscle glucose uptake, oxidation, and glycogen synthesis via an Akt-dependent mechanism. Expression of microRNA let-7a and let-7d, which are direct translational repressors of the IL-13 gene, was increased in skeletal muscle from T2DM patients. Overexpression of let-7a and let-7d in cultured myotubes reduced IL-13 secretion. Furthermore, basal glycogen synthesis was reduced in cultured myotubes exposed to an IL-13-neutralizing antibody. Thus, IL-13 is synthesized and released by skeletal muscle through a mechanism involving let-7, and this effect is attenuated in skeletal muscle from insulin-resistant T2DM patients. In conclusion, IL-13 plays an autocrine role in skeletal muscle to increase glucose uptake and metabolism, suggesting a role in glucose homeostasis in metabolic disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.