Abstract

Ovarian tumors are primarily derived from the layer of epithelium surrounding the ovary termed the ovarian surface epithelium (OSE). Although extensive research has focused on established ovarian tumors, relatively little is known about the normal biology of the OSE that gives rise to ovarian cancer. The local expression and actions of growth factors are likely involved in both normal and tumorigenic OSE biology. The current study investigates the expression and action of keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), and kit-ligand (KL) in normal ovarian surface epithelium (OSE). The actions of various growth factors on KGF, HGF, and KL expression are examined. Observations indicate that freshly isolated normal OSE express the genes for KGF, HGF, and KL and expression is maintained in vitro. KGF messenger RNA expression in OSE was found to be stimulated by KGF and HGF, but not KL. HGF expression in OSE was found to be stimulated by KGF, HGF, and KL. KL expression in OSE was also found to be stimulated by KGF, HGF, and KL. Therefore, the various growth factors can regulate the mRNA expression of each other in OSE. Effects of growth factors on OSE growth were examined. KGF, HGF, and KL stimulated OSE growth to similar levels as the positive control epidermal growth factor. Observations suggest that KGF, HGF, and KL interact to promote OSE growth and growth factor expression. The ability of these growth factors to interact in a positive autocrine feedback loop is postulated to be important for normal OSE biology. Paracrine interactions with the adjacent stromal cells will also be a factor in OSE biology. Abnormal interactions of these growth factors may be involved in the onset and progression of ovarian cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.