Abstract

The increasing demand for high precision indoor positioning in many public services has urged research to implement cost-effective systems for a rising number of applications. However, current systems with either short-range positioning technology based on wireless local area networks (WLAN) and ZigBee achieving meter-level accuracy, or ultra-wide band (UWB) and 60 GHz communication technology achieving high precision but with high cost required, could not meet the need of indoor wireless positioning. This paper presents a new method of high precision indoor positioning by autocorrelation phase measurement of spread spectrum signal utilizing carrier frequency lower than 1 GHz, thereby decreasing power emission and hardware cost. The phase measurement is more sensitive to the distance of microwave transmission than timing, thus achieving higher positioning accuracy. Simulation results demonstrate that the proposed positioning method can achieve high precision of less than 1 centimeter decreasing when various noise and interference added.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.