Abstract
The development of autoclavable hydrogels has been driven by the need for materials that can withstand the rigors of sterilization without compromising their properties or functionality. Many conventional hydrogels cannot withstand autoclave treatment owing to the breakdown of their composition or structure under the high-temperature and high-pressure environment of autoclaving. Here, the effect of autoclaving on the physical, mechanical, and biological properties of bovine serum albumin methacryloyl (BSAMA) cryogels at three protein concentrations (3, 5, and 10%) was extensively studied. We found that BSAMA cryogels at three concentrations remained little changed after autoclaving in terms of gross shape, pore structure, and protein secondary structure. Young's modulus of autoclaved BSAMA cryogels (BSAMAA) at low concentrations (3 and 5%) was similar to that of BSAMA cryogels, whereas 10% BSAMAA exhibited a higher Young's modulus value, compared with 10% BSAMA. Interestingly, BSAMAA cryogels prolonged degradation. Importantly, cell viability, drug release, and hemolytic behaviors were found to be similar among the pre- and post-autoclaved cryogels. Above all, autoclaving proved to be more effective in sterilizing BSAMA cryogels from bacteria contamination than UV and ethanol treatments. Thus, autoclavable BSAMA cryogels with uncompromising properties would be useful for biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.