Abstract

Probiotics have emerged as biotherapeutic adjuncts to combat neonatal calf gastrointestinal disorders. Therefore, they are considered a suitable alternative to antibiotics for maintaining a healthy and balanced gut microbiota. Hence, the current investigation was carried out to evaluate the effect of autochthonous probiotics on Murrah buffalo calves. Sixteen calves (5-7 days of age) were randomly divided into four groups. Group I served as control (CT), fed a basal diet with no supplementation. Groups II (LR), III (LS), and IV (CS) were supplemented with Limosilactobacillus reuteri BF-E7, Ligilactobacillus salivarius BF-17, and a consortium of both probiotic strains at a rate of 1x108 CFU/g/calf per day along with the basal diet, respectively. Two previously isolated potential probiotic strains, Limosilactobacillus reuteri BF-E7 and Ligilactobacillus salivarius BF-17, were found to be compatible in vitro. Dietary supplementation of probiotics for sixty days significantly increased (P<0.05) dry matter intake (DMI, g/d), average daily gain (ADG, g/d), net body weight gain (kg), feed conversion efficiency (FCE), and structural growth measurements as compared to control. Furthermore, a considerable (P<0.05) increase in the abundance of beneficial intestinal microbiota (lactobacilli and bifidobacteria) was observed along with improvement in fecal biomarkers like lactate and ammonia, immune status, and reduced fecal score. Upon comparative analysis among treatment groups, the results were found to be better in the probiotic consortium fed group compared to the LR and LS treated groups. The present findings conclusively deduced that autochthonous probiotic consortium might serve as potential candidate for fostering performance, immunity, and gut health biomarkers in Murrah buffalo calves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.