Abstract

AbstractAlloying noble metal catalysts with early transition metals (ETMs) has shown great promise by simultaneously boosting catalytic activity and durability because of their strong electronic interactions. However, the very negative reduction potential of ETMs has posed great challenges for the synthesis of the desired alloy catalysts, not to mention the structure‐controlled synthesis. Here an autocatalytic surface reduction‐assisted strategy is reported to realize the controllable synthesis of ultrathin PtW alloy nanowires (NWs). The experimental evidence and density functional theory (DFT) calculations demonstrate that the preformed Pt NWs in the synthesis serve as the catalyst to facilitate the reduction of Wx+ species through the autocatalytic surface reduction mechanism. Using the alkaline hydrogen evolution reaction (HER) as a model reaction, the as‐synthesized PtW NWs/C catalyst shows an ultralow overpotential of 18 mV at 10 mA cm–2 and a high mass activity of 6.13 A mg–1Pt at an overpotential of 100 mV, ranking it among the most active catalysts. The dual roles of alloyed W atoms are further uncovered by theoretical simulations, involving the ensemble effect for accelerating H2O dissociation and a ligand effect for optimizing the hydrogen adsorption strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.