Abstract
The cis-cis [(cc)] and cis-trans [(ct)] conformers of carbonic acid (H2CO3) are known as the two most stable conformers based on the different orientations of two OH functional groups present in the molecule. To explain the interconversion of the (cc)-conformer to its (ct)-conformer, the rotation of one of the two indistinguishable OH functional groups present in the (cc)-conformer has been shown until now as the effective isomerization mechanism. Moreover, the (ct)-conformer, which is slightly energetically disfavored over the (cc)-conformer, has been considered as the starting point for the decomposition of H2CO3 into CO2 and H2O molecules. Experimentally, on the other hand, the infrared (IR) and Raman spectroscopy of the crystalline H2CO3 polymorphs suggest that the most possible basic building blocks of H2CO3 polymorphs consist of only and exclusively the (cc)-conformers. However, the sublimations of these crystalline H2CO3 polymorphs result both the (cc)- and (ct)-conformers in the vapor phase with the (cc)-conformer being the major species. In this article, we first report the high level ab initio calculations investigating the energetics of the autocatlytic isomerization mechanism between the two most stable conformers of carbonic acid in the vapor phase. The calculations have been performed at the MP2 level of theory in conjunction with aug-cc-pVDZ, aug-cc-pVTZ, and 6-311++G(3df,3pd) basis sets. The results of the present study specifically and strongly suggest that double hydrogen transfer within the eight-membered cyclic doubly hydrogen-bonded (H-bonded) ring interface of the H2CO3 homodimer formed between two (cc)-conformers is ultimately the starting mechanism for the isomerization of the (cc)-conformer to its (ct)-conformer, especially, during the sublimation of the H2CO3 polymorphs, which result in the vapor phase concentration of the (cc)-conformer at the highest levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.