Abstract

Ongoing climate change is driving the search for renewable and carbon-neutral alternatives to fossil fuels. Photocatalytic conversion of fatty acids to hydrocarbons by fatty acid photodecarboxylase (FAP) represents a promising route to green fuels. However, the alleged low activity of FAP on C2 to C12 fatty acids seemed to preclude the use for synthesis of gasoline-range hydrocarbons. Here, we reveal that Chlorella variabilis FAP (CvFAP) can convert n-octanoic acid in vitro four times faster than n-hexadecanoic acid, its best substrate reported to date. In vivo, this translates into a CvFAP-based production rate over 10-fold higher for n-heptane than for n-pentadecane. Time-resolved spectroscopy and molecular modeling demonstrate that CvFAP's high catalytic activity on n-octanoic acid is, in part, due to an autocatalytic effect of its n-heptane product, which fills the rest of the binding pocket. These results represent an important step toward a bio-based and light-driven production of gasoline-like hydrocarbons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call