Abstract

Deep learning has proven to be a powerful method with applications in various fields including image, language, and biomedical data. Thanks to the libraries and toolkits such as TensorFlow, PyTorch, and Keras, researchers can use different deep learning architectures and data sets for rapid modeling. However, the available implementations of neural networks using these toolkits are usually designed for a specific research and are difficult to transfer to other work. Here, we present autoBioSeqpy, a tool that uses deep learning for biological sequence classification. The advantage of this tool is its simplicity. Users only need to prepare the input data set and then use a command line interface. Then, autoBioSeqpy automatically executes a series of customizable steps including text reading, parameter initialization, sequence encoding, model loading, training, and evaluation. In addition, the tool provides various ready-to-apply and adapt model templates to improve the usability of these networks. We introduce the application of autoBioSeqpy on three biological sequence problems: the prediction of type III secreted proteins, protein subcellular localization, and CRISPR/Cas9 sgRNA activity. autoBioSeqpy is freely available with examples at https://github.com/jingry/autoBioSeqpy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.