Abstract

Compared with traditional image classification, fine-grained visual categorization is a more challenging task, because it targets to classify objects belonging to the same species, e.g., classify hundreds of birds or cars. In the past several years, researchers have made many achievements on this topic. However, most of them are heavily dependent on the artificial annotations, e.g., bounding boxes, part annotations, and so on. The requirement of artificial annotations largely hinders the scalability and application. Motivated to release such dependence, this paper proposes a robust and discriminative visual description named Automated Bi-level Description (AutoBD). "Bi-level" denotes two complementary part-level and object-level visual descriptions, respectively. AutoBD is "automated," because it only requires the image-level labels of training images and does not need any annotations for testing images. Compared with the part annotations labeled by the human, the image-level labels can be easily acquired, which thus makes AutoBD suitable for large-scale visual categorization. Specifically, the part-level description is extracted by identifying the local region saliently representing the visual distinctiveness. The object-level description is extracted from object bounding boxes generated with a co-localization algorithm. Although only using the image-level labels, AutoBD outperforms the recent studies on two public benchmark, i.e., classification accuracy achieves 81.6% on CUB-200-2011 and 88.9% on Car-196, respectively. On the large-scale Birdsnap data set, AutoBD achieves the accuracy of 68%, which is currently the best performance to the best of our knowledge.Compared with traditional image classification, fine-grained visual categorization is a more challenging task, because it targets to classify objects belonging to the same species, e.g., classify hundreds of birds or cars. In the past several years, researchers have made many achievements on this topic. However, most of them are heavily dependent on the artificial annotations, e.g., bounding boxes, part annotations, and so on. The requirement of artificial annotations largely hinders the scalability and application. Motivated to release such dependence, this paper proposes a robust and discriminative visual description named Automated Bi-level Description (AutoBD). "Bi-level" denotes two complementary part-level and object-level visual descriptions, respectively. AutoBD is "automated," because it only requires the image-level labels of training images and does not need any annotations for testing images. Compared with the part annotations labeled by the human, the image-level labels can be easily acquired, which thus makes AutoBD suitable for large-scale visual categorization. Specifically, the part-level description is extracted by identifying the local region saliently representing the visual distinctiveness. The object-level description is extracted from object bounding boxes generated with a co-localization algorithm. Although only using the image-level labels, AutoBD outperforms the recent studies on two public benchmark, i.e., classification accuracy achieves 81.6% on CUB-200-2011 and 88.9% on Car-196, respectively. On the large-scale Birdsnap data set, AutoBD achieves the accuracy of 68%, which is currently the best performance to the best of our knowledge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call