Abstract

This paper presents a stochastic, multi-parameters, divergence optimization method for the auto-tuning of proportional–integral–derivative (PID) controllers according to a fractional-order reference model. The study aimed to approximate the step response of the real closed-loop flight control system to the response of a theoretical reference model for a smoother and more precise flight control experience. The proposed heuristic optimization method can auto-tune a PID controller without a precise plant model. This is very advantageous when dealing with model and parameter uncertainties in real control application and practice. Experimental study confirms the reference model driven auto-tuning of the DC rotor prototype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.