Abstract

Glioma is the most common primary intracranial neoplasm in adults. Radiotherapy is a treatment approach in glioma patients, and Magnetic Resonance Imaging (MRI) is a beneficial diagnostic tool in treatment planning. Treatment response assessment in glioma patients is usually based on the Response Assessment in Neuro Oncology (RANO) criteria. The limitation of assessment based on RANO is two-dimensional (2D) manual measurements. Deep learning (DL) has great potential in neuro-oncology to improve the accuracy of response assessment. In the current research, firstly, the BraTS 2018 Challenge dataset included 210 HGG and 75 LGGwere applied to train a designed U-Net network for automatic tumor and intra-tumoral segmentation, followed by training of the designed classifier with transfer learning for determining grading HGG and LGG. Then, designed networks were employed for the segmentation and classification of local MRI images of 49 glioma patients preand post-radiotherapy. The results of tumor segmentation and its intra-tumoral regions were utilized to determine the volume of different regions and treatment response assessment. Treatment response assessment demonstrated that radiotherapy is effective on the whole tumor and enhancing region with p-value ≤ 0.05 with a 95% confidence level, while it did not affect necrosis and peri-tumoral edema regions. This work demonstrated the potential of using deep learning in MRI images to provide a beneficial tool in the automated treatment response assessment so that the patient can obtain the best treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call