Abstract

We treat the problem of searching for hidden multi-dimensional independent auto-regressive processes (auto-regressive independent process analysis, AR-IPA). Independent subspace analysis (ISA) can be used to solve the AR-IPA task. The so-called separation theorem simplifies the ISA task considerably: the theorem enables one to reduce the task to one-dimensional blind source separation task followed by the grouping of the coordinates. However, the grouping of the coordinates still involves two types of combinatorial problems: (a) the number of the independent subspaces and their dimensions, and then (b) the permutation of the estimated coordinates are to be determined. Here, we generalize the separation theorem. We also show a non-combinatorial procedure, which—under certain conditions—can treat these two combinatorial problems. Numerical simulations have been conducted. We investigate problems that fulfill sufficient conditions of the theory and also others that do not. The success of the numerical simulations indicates that further generalizations of the separation theorem may be feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.